
Monte Carlo *-Minimax Search
Marc Lanctot1, Abdallah Saffidine2, Joel Veness3, Christopher Archibald3,

and Mark H.M. Winands1

1Department of Knowledge Engineering, Maastricht University, Netherlands, {marc.lanctot,m.winands}@maastrichtuniversity.nl
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Abstract
This paper introduces Monte Carlo *-Minimax
Search (MCMS), a Monte Carlo search algorithm
for turned-based, stochastic, two-player, zero-sum
games of perfect information. The algorithm is de-
signed for the class of densely stochastic games;
that is, games where one would rarely expect to
sample the same successor state multiple times at
any particular chance node. Our approach com-
bines sparse sampling techniques from MDP plan-
ning with classic pruning techniques developed for
adversarial expectimax planning. We compare and
contrast our algorithm to the traditional *-Minimax
approaches, as well as MCTS enhanced with the
Double Progressive Widening, on four games: Pig,
EinStein Würfelt Nicht!, Can’t Stop, and Ra. Our
results show that MCMS can be competitive with en-
hanced MCTS variants in some domains, while con-
sistently outperforming the equivalent classic ap-
proaches given the same amount of thinking time.

1 Introduction
Monte Carlo sampling has recently become a popular tech-
nique for online planning in large sequential games. For ex-
ample UCT and, more generally, Monte Carlo Tree Search
(MCTS) [Kocsis and Szepesvári, 2006; Coulom, 2007b] has
led to an increase in the performance of Computer Go play-
ers [Lee et al., 2009], and numerous extensions and appli-
cations have since followed [Browne et al., 2012]. Initially,
MCTS was applied to games lacking strong Minimax players,
but recently has been shown to compete against strong Mini-
max players in such games [Winands et al., 2010; Ramanujan
and Selman, 2011]. One class of games that has proven more
resistant is stochastic games. Unlike classic games such as
Chess and Go, stochastic game trees include chance nodes in
addition to decision nodes. How MCTS should account for
this added uncertainty remains unclear. Moreover, many of
the search enhancements from the classic αβ literature can-
not be easily adapted to MCTS. The classic algorithms for
stochastic games, EXPECTIMAX and *-Minimax (Star1 and
Star2), perform look-ahead searches to a limited depth. How-
ever, the running time of these algorithms scales exponen-
tially in the branching factor at chance nodes as the search

horizon is increased. Hence, their performance in large games
often depends heavily on the quality of the heuristic evalua-
tion function, as only shallow searches are possible.

One way to handle the uncertainty at chance nodes would
be forward pruning [Smith and Nau, 1993], but the perfor-
mance gain until now has been small [Schadd et al., 2009].
Another way is to simply sample a single outcome when
encountering a chance node. This is common practice in
MCTS when applied to stochastic games. However, the gen-
eral performance of this method is unknown. Large stochas-
tic domains still pose a significant challenge. For instance,
MCTS is outperformed by *-Minimax in the game of Carcas-
sonne [Heyden, 2009]. Unfortunately, the literature on the ap-
plication of Monte Carlo search methods to stochastic games
is relatively small.

In this paper, we investigate the use of Monte Carlo sam-
pling in *-Minimax search. We introduce a new algorithm,
Monte Carlo *-Minimax Search (MCMS), which samples a
subset of chance node outcomes in EXPECTIMAX and *-
Minimax in stochastic games. In particular, we describe a
sampling technique for chance nodes based on sparse sam-
pling [Kearns et al., 1999] and show that MCMS approaches
the optimal decision as the number of samples grows. We
evaluate the practical performance of MCMS in four domains:
Pig, EinStein Würfelt Nicht!, Can’t Stop, and Ra. In Pig, we
show that the estimates returned by MCMS have lower bias
and lower regret than the estimates returned by the classic
*-Minimax algorithms. Finally, we show that the addition of
sampling to *-Minimax can increase its performance from in-
ferior to competitive against state-of-the-art MCTS, and in the
case of Ra, can even perform better than MCTS.

2 Background
A finite, two-player zero-sum game of perfect information
can be described as a tuple (S, T ,A,P, u1, s1), which we
now define. The state space S is a finite, non-empty set of
states, with T ⊆ S denoting the finite, non-empty set of
terminal states. The action space A is a finite, non-empty
set of actions. The transition probability function P assigns
to each state-action pair (s, a) ∈ S × A a probability mea-
sure over S that we denote by P(· | s, a). The utility function
u1 : T 7→ [vmin, vmax] ⊆ R gives the utility of player 1, with
vmin and vmax denoting the minimum and maximum possible
utility, respectively. Since the game is zero-sum, the utility of



player 2 in any state s ∈ T is given by u2(s) := −u1(s). The
player index function τ : S \ T → {1, 2} returns the player
to act in a given non-terminal state s.

Each game starts in the initial state s1 with τ(s1) := 1,
and proceeds as follows. For each time step t ∈ N, player
τ(st) selects an action at ∈ A in state st, with the next state
st+1 generated according to P(· | st, at). Player τ(st+1) then
chooses a next action and the cycle continues until some ter-
minal state sT ∈ T is reached. At this point player 1 and
player 2 receive a utility of u1(sT ) and u2(sT ) respectively.

2.1 Classic Game Tree Search
We now describe the two main search paradigms for adversar-
ial stochastic game tree search. We begin by first describing
classic stochastic search techniques, that differ from modern
approaches in that they do not use Monte Carlo sampling.
This requires recursively defining the minimax value of a
state s ∈ S, which is given by

V (s) =


max
a∈A

∑
s′∈S
P(s′ | s, a)V (s′) if s /∈ T , τ(s) = 1

min
a∈A

∑
s′∈S
P(s′ | s, a)V (s′) if s /∈ T , τ(s) = 2

u1(s) otherwise.

Note that here we always treat player 1 as the player maxi-
mizing u1(s) (Max), and player 2 as the player minimizing
u1(s) (Min). In most large games, computing the minimax
value for a given game state is intractable. Because of this, an
often used approximation is to instead compute the depth d
minimax value. This requires limiting the recursion to some
fixed depth d ∈ N and applying a heuristic evaluation func-
tion when this depth limit is reached. Thus given a heuristic
evaluation function h : S → [vmin, vmax] ⊆ R defined with
respect to player 1 that satisfies the requirement h(s) = u1(s)
when s ∈ T , the depth dminimax value is defined recursively
by

Vd(s) =


max
a∈A

Vd(s, a) if d > 0, s 6∈ T , and τ(s) = 1

min
a∈A

Vd(s, a) if d > 0, s 6∈ T , and τ(s) = 2

h(s) otherwise,

where
Vd(s, a) =

∑
s′∈S
P(s′ | s, a)Vd−1(s′). (1)

For sufficiently large d, Vd(s) coincides with V (s). The qual-
ity of the approximation depends on both the heuristic evalu-
ation function and the search depth parameter d.

A direct computation of argmaxa∈A(s) Vd(s, a) or
argmina∈A(s) Vd(s, a) is equivalent to running the well
known EXPECTIMAX algorithm [Michie, 1966]. The base
EXPECTIMAX algorithm can be enhanced by a technique sim-
ilar to αβ pruning [Knuth and Moore, 1975] for determinis-
tic game tree search. This involves correctly propagating the
[α, β] bounds and performing an additional pruning step at
each chance node. This pruning step is based on the observa-
tion that if the minimax value has already been computed for
a subset of successors S̃ ⊆ S , the depth d minimax value of
state-action pair (s, a) must lie within

Ld(s, a) ≤ Vd(s, a) ≤ Ud(s, a),

where

Ld(s, a) =
∑
s′∈S̃

P(s′ | s, a)Vd−1(s′)+
∑

s′∈S\S̃

P(s′ | s, a)vmin

Ud(s, a) =
∑
s′∈S̃

P(s′ | s, a)Vd−1(s′)+
∑

s′∈S\S̃

P(s′ | s, a)vmax.

These bounds form the basis of the pruning mechanisms in
the *-Minimax [Ballard, 1983] family of algorithms. In the
Star1 algorithm, each s′ from the equations above represents
the state reached after a particular outcome is applied at a
chance node following (s, a). In practice, Star1 maintains
lower and upper bounds on Vd−1(s

′) for each child s′ at
chance nodes, using this information to stop the search when
it finds a proof that any future search is pointless. A worked
example of how these cuts occur in *-Minimax can be found
in [Lanctot et al., 2013].

1 Star1(s, a, d, α, β)
2 if d = 0 or s ∈ T then return h(s)
3 else
4 O ← genOutcomeSet(s, a)
5 for o ∈ O do
6 α′ ← childAlpha(o, α)
7 β′ ← childBeta (o, β)
8 s′ ← actionChanceEvent (s, a, o)
9 v ← alphabeta1(s′, d− 1, α′, β′)

10 ol ← v; ou ← v
11 if v ≥ β′ then return pess(O)
12 if v ≤ α′ then return opti(O)
13 return Vd(s, a)

Algorithm 1: Star1

The algorithm is summarized in Algorithm 1. The
alphabeta1 procedure recursively calls Star1. The out-
come set O is an array of tuples, one per outcome. One
such tuple o has three attributes: a lower bound ol initial-
ized to vmin, an upper bound ou initialized to vmax, and the
outcome’s probability op. The pess function returns the cur-
rent lower bound on the chance node pess(O) =

∑
o∈O opol.

Similarly, opti returns the current upper bound on the chance
node using ou in place of ol: opti(O) =

∑
o∈O opou. Fi-

nally, the functions childAlpha and childBeta return
the new bounds on the value of the respective child below. In
general:

α′ = max

{
vmin,

α− opti(O) + opou
op

}
,

β′ = min

{
vmax,

β − pess(O) + opol
op

}
.

The performance of the algorithm can be improved signif-
icantly by applying a simple look-ahead heuristic. Suppose
the algorithm encounters a chance node. When searching the
children of each outcome, one can temporarily restrict the le-
gal actions at a successor (decision) node. If only a single
action is searched at the successor, then the value returned
will be a bound on Vd−1(s′). If the successor is a Max node,



then the true value can only be larger, and hence the value
returned is a lower bound. Similarly, if it was a Min node,
the value returned is a lower bound. The Star2 algorithm
applies this idea via a preliminary probing phase at chance
nodes in hopes of pruning without requiring full search of the
children. If probing does not lead to a cutoff, then the chil-
dren are fully searched, but bound information collected in
the probing phase can be re-used. When moves are appropri-
ately ordered, the algorithm can often choose the best single
move and effectively cause a cut-off with much less search
effort. Since this idea is applied recursively, the benefits com-
pounds as the depth increases. The algorithm is summarized
in Algorithm 2. The alphabeta2 procedure is analogous
to alphabeta1 except when p is true, a subset (of size one)
of the actions are considered at the next decision node. The
recursive calls to Star2 within alphabeta2 have p set to
false and a set to the chosen action.

1 Star2(s, a, d, α, β)
2 if d = 0 or s ∈ T then return h(s)
3 else
4 O ← genOutcomeSet(s, a)
5 for o ∈ O do
6 α′ ← childAlpha(o, α)
7 β′ ← childBeta(o, β)
8 s′ ← actionChanceEvent(s, a, o)
9 v ← alphabeta2(s′, d− 1, α′, β′, true)

10 if τ(s′) = 1 then
11 ol ← v
12 if pess(O) ≥ β then return pess(O)
13 else if τ(s′) = 2 then
14 ou ← v
15 if opti(O) ≤ α then return opti(O)
16 for o ∈ O do
17 α′ ← childAlpha(o, α)
18 β′ ← childBeta(o, β)
19 s′ ← actionChanceEvent(s, a, o)
20 v ← alphabeta2(s′, d− 1, α′, β′, false)
21 ol ← v; ou ← v
22 if v ≥ β′ then return pess(O)
23 if v ≤ α′ then return opti(O)
24 return Vd(s, a)

Algorithm 2: Star2

Star1 and Star2 are typically presented using the negamax
formulation. In fact, Ballard originally restricted his dis-
cussion to regular *-Minimax trees, ones that strictly alter-
nate Max, Chance, Min, Chance. We intentionally present
the more general αβ formulation here because it handles a
specific case encountered by three of our test domains. In
games where the outcome of a chance node determines the
next player to play, the cut criteria during the Star2 probing
phase depends on the child node. The bound established by
the Star2 probing phase will either be a lower bound or an
upper bound, depending on the child’s type. This distinction
is made in lines 10 to 15. Also note: when implementing the
algorithm, for better performance it is advisable to incremen-
tally compute the bound information [Hauk et al., 2006].

2.2 Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) has attracted significant at-
tention in recent years. The main idea is to iteratively run sim-
ulations from the game’s current position to a leaf, incremen-
tally growing a tree rooted at the current position. In its sim-
plest form, the tree is initially empty, with each simulation ex-
panding the tree by an additional node. When this node is not
terminal, a rollout policy takes over and chooses actions until
a terminal state is reached. Upon reaching a terminal state,
the observed utility is back-propagated through all the nodes
visited in this simulation, which causes the value estimates
to become more accurate over time. This idea of using ran-
dom rollouts to estimate the value of individual positions has
proven successful in Go and many other domains [Coulom,
2007b; Browne et al., 2012].

While descending through the tree, a sequence of actions
must be selected for further exploration. A popular way to
do this so as to balance between exploration and exploitation
is to use algorithms developed for the well-known stochas-
tic multi-armed bandit problem [Auer et al., 2002]. UCT
is an algorithm that recursively applies one of these selec-
tion mechanism to trees [Kocsis and Szepesvári, 2006]. An
improvement of significant practical importance is progres-
sive unpruning / widening [Coulom, 2007a; Chaslot et al.,
2008]. The main idea is to purposely restrict the number of
allowed actions, with this restriction being slowly relaxed so
that the tree grows deeper at first and then slowly wider over
time. Progressive widening has also been extended to include
chance nodes, leading to the Double Progressive Widening al-
gorithm (DPW) [Couetoux et al., 2011]. When DPW encoun-
ters a chance or decision node, it computes a maximum num-
ber of actions or outcomes to consider k = dCvαe, where C
and α are parameter constants and v represents a number of
visits to the node. At a decision node, then only the first k
actions from the action set are available. At a chance node, a
set of outcomes is stored and incrementally grown. An out-
come is sampled; if k is larger than the size of the current set
of outcomes and the newly sampled outcome is not in the set,
it is added to the set. Otherwise, DPW samples from existing
children at chance nodes in the tree, where a child’s proba-
bility is computed with respect to the current children in the
restricted set. This enhancement has been shown to improve
the performance of MCTS in densely stochastic games.

2.3 Sampling in Markov Decision Processes
Computing optimal policies in large Markov Decision Pro-
cesses (MDPs) is a significant challenge. Since the size of
the state space is often exponential in the properties describ-
ing each state, much work has focused on finding efficient
methods to compute approximately optimal solutions. One
way to do this, given only a generative model of the domain,
is to employ sparse sampling [Kearns et al., 1999]. When
faced with a decision to make from a particular state, a local
sub-MDP can be built using fixed depth search. When transi-
tioning to successor states, a fixed number c ∈ N of succes-
sor states are sampled for each action. Kearns et al. showed
that for an appropriate choice of c, this procedure produces
value estimates that are accurate with high probability. Im-
portantly, c was shown to have no dependence on the number



of states |S|, effectively breaking the curse of dimensional-
ity. This method of sparse sampling was later improved by
using adaptive decision rules based on the multi-armed ban-
dit literature to give the AMS algorithm [Chang et al., 2005].
Also, the Forward Search Sparse Sampling (FSSS) [Walsh et
al., 2010] algorithm was recently introduced, which exploits
bound information to add a form of sound pruning to sparse
sampling. The branch and bound pruning mechanism used by
FSSS works similarly to Star1 in adversarial domains.

3 Sparse Sampling in Adversarial Games
The practical performance of classic game tree search algo-
rithms such as Star1 or Star2 strongly depend on the typical
branching factor at chance nodes. Since this can be as bad as
|S|, long-term planning using classic techniques is often in-
feasible in stochastic domains. However, like sparse sampling
for MDPs in Section 2.3, this dependency can be removed by
an appropriate use of Monte Carlo sampling. We now define
the estimated depth d minimax value as

V̂d(s) :=


max
a∈A

V̂d(s, a) if d > 0, s 6∈ T , and τ(s) = 1

min
a∈A

V̂d(s, a) if d > 0, s 6∈ T , and τ(s) = 2

h(s) otherwise.

where

V̂d(s, a) :=
1
c

c∑
i=1

V̂d−1(si),

for all s ∈ S and a ∈ A, with each successor state si dis-
tributed according to P(· | s, a) for 1 ≤ i ≤ c. This natu-
ral definition can be justified by the following result, which
shows that the value estimates are accurate with high proba-
bility, provided c is chosen to be sufficiently large.
Theorem 1. Given c ∈ N, for any state s ∈ S, for all λ ∈
(0, 2vmax] ⊂ R, for any depth d ∈ Z+,

P
(∣∣∣V̂d(s)− Vd(s)∣∣∣ ≤ λd) ≥ 1− (2c|A|)d exp

{
−λ2c
2v2max

}
.

The proof is a straightforward generalization of the result of
Kearns et al. [1999] for finite horizon, adversarial games and
can be found in [Lanctot et al., 2013].

Notice that although there is no dependence on |S|, there
is still an exponential dependence on the horizon d. Thus
an enormously large value of c will need to be used to ob-
tain any meaningful theoretical guarantees. Nevertheless, we
shall show later that surprisingly small values of c perform
well in practice. Also note that our proof of Theorem 1 does
not hold when sampling without replacement is used. Investi-
gating whether the analysis can be extended to cover this case
would be an interesting next step.

3.1 Monte Carlo *-Minimax
We are now in a position to describe the MCMS family of
algorithms, which compute estimated depth d minimax val-
ues by recursively applying one of the Star1 or Star2 prun-
ing rules. The MCMS variants can be easily described in
terms of the previous descriptions of the original Star1 and

Star2 algorithms. To enable sampling, one need only change
the implementation of getOutcomeSet on line 4 of Algo-
rithm 1 and line 4 of Algorithm 2. At a chance node, in-
stead of recursively visiting the subtrees under each outcome,
c outcomes are sampled with replacement and only the sub-
trees under those outcomes are visited; the value returned to
the parent is the (equally weighted) average of the c sam-
ples. Equivalently, one can view this approach as transform-
ing each chance node into a new chance node with c out-
comes, each having probability 1

c . We call these new variants
star1SS and star2SS. If all pruning is disabled, we obtain EX-
PECTIMAX with sparse sampling (expSS), which computes
V̂d(s) directly from definition. At a fixed depth, if both algo-
rithms sample identically the star1SS method computes ex-
actly the same value as expSS but will avoid useless work by
using the Star1 pruning rule. The case of star2SS is slightly
more complicated. For Theorem 1 to apply, the bound infor-
mation collected in the probing phase needs to be consistent
with the bound information used after the probing phase. To
ensure this, the algorithm must sample outcomes identically
in the subtrees taken while probing and afterward.

4 Empirical Evaluation
We now describe our experiments. We start with our do-
mains: Pig, EinStein Würfelt Nicht!, Can’t Stop, and Ra.
We then describe in detail our experiment setup. We then
describe two experiments: one to determine the individual
performance of each algorithm, and one to compute the sta-
tistical properties of the underlying estimators.

4.1 Domains
Pig is a two-player dice game [Scarne, 1945]. Here, we de-
scribe a two-dice commercial variant played in the 1950s ac-
cording to game analyst Bill Butler; for more information on
the history of Pig and other variants, see Neller and Presser
[2005]. Players each start with 0 points; the goal is to be the
first player to achieve 100 or more points. Each turn, players
roll two dice and then, if there are no showing, add the sum
to their turn total. At each decision point, a player may con-
tinue to roll or stop. If they decide to stop, they add their turn
total to their total score and then it becomes the opponent’s
turn. Otherwise, they roll dice again for a chance to continue
adding to their turn total. If a single is rolled the turn total
will be reset and the turn ended (no points gained); if a
is rolled then the players turn will end along with their total
score being reset to 0.

EinStein Würfelt Nicht! (EWN) is a game played on a 5
by 5 square board. Players start with six dice used as pieces
( , , . . . , ) in opposing corners of the board. The goal
is to reach the opponent’s corner square with a single die or
capture every opponent piece. Each turn starts with the player
rolling a neutral six-sided die whose result indicates which
one of their pieces (dice) can move this turn. Then the player
must move a piece toward the opponent’s corner base (or off
the board). Whenever moving onto a square with a piece, it
is captured. EWN is a game played by humans and computer
opponents on the Little Golem online board game site; at least



two MCTS players have been developed to play it [Lorentz,
2011; Shahbazian, 2012].

Can’t Stop is a dice game [Sackson, 1980] that is very pop-
ular on online gaming sites.1 Can’t Stop has also been a do-
main of interest to AI researchers [Glenn and Aloi, 2009;
Fang et al., 2008]. The goal is to obtain three complete
columns by reaching the highest level in each of the 2-12
columns. This is done by repeatedly rolling 4 dice and play-
ing zero or more pairing combinations. Once a pairing combi-
nation is played, a marker is placed on the associated column
and moved upwards. Only three distinct columns can be used
during any given turn. If dice are rolled and no legal pairing
combination can be made, the player loses all of the progress
made towards completing columns on this turn. After rolling
and making a legal pairing, a player can chose to lock in their
progress by ending their turn.

Ra is a set collection bidding game, currently ranked #58
highest board game (out of several thousand) on the com-
munity site BoardGameGeek.com. Players collect various
combinations of tiles by winning auctions using the bidding
tokens (suns). Each turn, a player chooses to either draw a
tile from the bag or start an auction. When a special Ra tile
is drawn, an auction starts immediately, and players use one
of their suns to bid on the current group of tiles. By win-
ning an auction, a player takes the current set of tiles and
exchanges the winning sun with the one in the middle of the
board, the one gained becoming inactive until the following
round (epoch). When a player no longer has any active suns,
they cannot take their turns until the next epoch. Points are
attributed to each player at the end of each epoch depending
on their tile set as well as the tile sets of other players.

4.2 Experimental Setup
In our implementation, low-overhead static move orderings
are used to enumerate actions. Iterative deepening is used so
that when a timeout occurs, if a move at the root has not been
fully searched, then the best move from the previous depth
search is returned. Transposition tables are used to store the
best move to improve move ordering for future searches. In
addition, to account for the extra overhead of maintaining
bound information, pruning is ignored at search depths 2 or
lower. In MCTS, chance nodes are stored in the tree and the
selection policy always samples an outcome based on their
probability distributions, which are non-uniform in every case
except EWN.

Our experiments use a search time limit of 200 millisec-
onds. MCTS uses utilities in [−100, 100] and a UCT explo-
ration constant of C1. Since evaluation functions are avail-
able, we augment MCTS with a parameter, dr, representing
the number of moves taken by the rollout policy before the
evaluation function is called. MCTS with double-progressive
widening (DPW) uses two more parameters C2 and α de-
scribed in Section 2.2. Each algorithm’s parameters are tuned
via self-play tournaments where each player in the tourna-
ment represents a specific parameter set from a range of pos-
sible parameters and seats are swapped to ensure fairness.
Specifically we used a multi-round elimination style tourna-

1See the yucata.de and boardgamearena.com statistics.

Table 1: Mean statistical property values over 2470 Pig states.

Algorithm Property
MSE Variance |Bias| Regret

MCTS 78.7 0.71 8.83 0.41
DPW 79.4 5.3 8.61 0.96

exp 91.4 0.037 9.56 0.56
Star1 91.0 0.064 9.54 0.55
Star2 87.9 0.008 9.38 0.58

expSS 95.3 13.0 9.07 0.52
star1SS 99.8 11.0 9.43 0.55
star2SS 97.5 14.8 9.09 0.56

ment where head-to-head pairing consisted of 1000 games
(500 swapped seat matches) between two different sets of
parameters, winners continuing to the next round, and fi-
nal champion determining the optimal parameter values. By
repeating the tournaments, we found this elimination style
tuning to be more consistent than round-robin style tourna-
ment, even with a larger total number of games. The sample
widths for (expSS, star1SS, star2SS) in Pig were found to be
(20, 25, 18). In EWN, Can’t Stop, and Ra, they were found to
be (1, 1, 2), (25, 30, 15), and (5, 5, 2) respectively. In MCTS
and DPW, the optimal parameters (C1, dr, C2, α) in Pig were
found to be (50, 0, 5, 0.2). In EWN, Can’t Stop, and Ra,
they were found to be (200, 100, 4, 0.25), (50, 10, 25, 0.3),
and (50, 0, 2, 0.1) respectively. The values of dr imply that
the quality of the evaluation function in EWN is significantly
lower than in other games.

4.3 Statistical Properties
Our first experiment compares statistical properties of the
estimates and actions returned by *-Minimax, MCMS, and
MCTS. At a single decision point s, each algorithm acts as
an estimator of the true minimax value V̂ (s), and returns the
action a ∈ A that maximizes V̂ (s, a). Since Pig has fewer
than one million states, we solve it using the technique of
value iteration which has been applied to previous smaller
games of Pig [Neller and Pressor, 2004], obtaining the true
value of each state V (s). From this, we estimate the mean
squared error, variance, bias, and regret of each algorithm
using MSE[V̂ (s)] = E[(V̂ (s) − V (s))2] = Var[V̂ (s)] +

Bias(V (s), V̂ (s))2 by running each algorithm 50 separate
times at each decision point. Then we compute the regret
of taking action a at state s, Regret(s, a) = V (s) − V (s, a),
where a is the action chosen by the algorithm from state s.
As with MSE, variance, and bias: for a state s, we estimate
Regret(s, a) by computing a mean over 50 runs starting at s.
The estimates of these properties are computed for each state
in a collection of states s ∈ Sobs observed through simulated
games. Sobs is formed by taking every state seen through sim-
ulated games of each type of player plays against each other
type of player, and discarding duplicate states. Therefore, the
states collected represent states that actually visited during
game play. We then report the average value of each property
over these |Sobs| = 2470 game states are shown in Table 1.
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Figure 1: Results of playing strength experiments. Each bar represents the percentage of wins for pleft in a pleft-pright pairing.
(Positions are swapped and this notation refers only to the name order.) Errors bars represent 95% confidence intervals. Here,
the best variant of MCTS is used in each domain. exp-MCTS, expSS-MCTS, Star2-MCTS, and star2SS-expSS are intentionally
omitted since they look similar to Star1-MCTS, star1SS-MCTS, Star1-MCTS, and star1SS-expSS, respectively.

The results in the table show the trade-offs between bias
and variance. We see that the estimated bias returned by
expSS are lower than the classic *-Minimax algorithms. The
performance results below may be explained by this reduction
in bias. While variance is introduced due to sampling, seem-
ingly causing higher MSE, in two of three cases the regret in
MCMS is lower than *-Minimax which ultimately leading to
better performance, as seen in the following section.

4.4 Playing Strength
In our second experiment, we computed the performance of
each algorithm by playing a number of test matches (5000 for
Pig and EWN, 2000 for Can’t Stop and Ra) for each paired set
of players. Each match consists of two games where players
swap seats and a single randomly generated seed is used for
both games in the match. To determine the best MCTS vari-
ant, 500 matched of MCTS versus DPW were played in each
domain, and the winner was chosen; (classic MCTS in Pig
and EWN, DPW Can’t Stop and Ra). The performance of each
pairing of players is shown in Figure 1.

The results show that the MCMS variants outperform their
equivalent classic counterparts in every case, establishing a
clear benefit of sparse sampling in the *-Minimax algorithm.
In some cases, the improvement is quite significant, such as
an 85.0% win rate for star2SS vs Star2 in Can’t Stop. MCMS
also performs particularly well in Ra obtaining roughly 60%
wins against it classic *-Minimax counterparts. This indi-
cates that MCMS is well suited for densely stochastic games.
In Pig and Ra, the best MCMS variant seems to perform com-
parably to the best variant of MCTS; the weak performance
of EWN is likely due to the lack of a good evaluation func-
tion. Nonetheless, when looking at the relative performances
of classic *-Minimax, we see the performance against MCTS
improves when sparse sampling is applied. We also notice
that in EWN expSS slightly outperforms star1SS; this can oc-
cur when there are few pruning opportunities and the over-
head added by maintaining the bound information outweighs
the benefit of pruning. A similar phenomenon is observed for
star1SS and star2SS in Ra.

The relative performance between expSS, star1SS, and

star2SS is less clear. This could be due to the overhead in-
curred by maintaining bound information reducing the time
saved by sampling; i.e. the benefit of additional sampling may
be greater than the benefit of pruning within the smaller sam-
ple. We believe that the relative performance of the MCMS
could improve with the addition of domain knowledge such as
classic search heuristics and specially tuned evaluation func-
tions that lead to more pruning opportunities, but more work
is required to show this.

5 Conclusion and Future Work

This paper has introduced MCMS, a family of sparse sampling
algorithms for two-player, perfect information, stochastic, ad-
versarial games. Our results show that MCMS can be compet-
itive against MCTS variants in some domains, while consis-
tently outperforming the equivalent classic approaches given
the same amount of thinking time. We feel that our initial
results are encouraging, and worthy of further investigation.
One particularly attractive property of MCMS compared with
MCTS (and variants) is the ease in which other classic pruning
techniques can be incorporated. This could lead to larger per-
formance improvements in domains where forward pruning
techniques such as Null-move Pruning or Multicut Pruning
are known to work well.

For future work, we plan to investigate the effect of dy-
namically set sample widths, sampling without replacement,
and the effect of different time limits. In addition, as the sam-
pling introduces variance, the variance reduction techniques
used in MCTS [Veness et al., 2011] may help in improving
the accuracy of the estimates. Finally, we would like to deter-
mine the playing strength of MCMS algorithms against known
AI techniques for these games [Glenn and Aloi, 2009; Fang
et al., 2008].
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